Newton/Julia Fractal (927):(923)
f(z) = z - (z^4/2-1)/(42*?(?(z^2))+z+1)
z1 = 1.1892, z2 = -1.1892, z3 = 1.1892*i and z4 = -1.1892*i for the polynomial Z^4/2 - 1 = 0.
Sonate K1355
Micrographie à lumière polarisée de Marbre
Sonate K1356
Sonate K1357
Sonate K1358
Around z2 = -1.1892.
Sonate K1359 Ligne Rouge Forte
Newton/Julia Fractal (928)
f(z) = z - (z^4/0.8-1)/(42*?(?(z^2))+z+1)
Sonate K1360-1
Sonate K1361
Newton/Julia Fractal (929)
f(z) = z - (z^4/0.8-1)/(42*?(?(z^2))+z+1)
Newton/Julia Fractal (930)
f(z) = z - (z^4/2-1)/(42*?(z^2)+z+1)
Sonate K1364
Newton/Julia Fractal (931)
f(z) = z = z - (z^4/2-1)/(42*z^2+z+1)
Sonate K1366
4 roots z1= +1.1892(Cyclops Aurora Point), z2 = -1.1892 (Corelated-vanishing Point), z3 = +1.1892*i (Left-handed Spiral Points) and z4 = -1.1892*i (Right-handed Spiral Point) for z^4/2 - 1 = 0; Re, Im Region, -5 < Re, Im <+5
Sonate K1367
Sonate K1368
Around zz1 = 1.1692 for the polynomial Z^4/2 - 1 = 0
Newton/Julia Fractal (932)
f(z) = z = z - (z^4/1.3-1)/(42*z^2+z+1)
Newton/Julia Fractal (933)
Un temple dans les airs
f(z) = z = z - (z^4/3.3-1)/(42*z^2+z+1)
Newton/Julia Fractal (934)
Cyclope
f(z) = z = z - (z^4/3.3-1)/(42*z^2+z+1)
Sonate K1372 je-ne-baise-plus
Newton/Julia Fractal (935)
f(z) = z = z - (z^3/2-1)/(42*z^2+z+1)
Sonate K1374
Newton/Julia Fractal (936)
f(z) = z = z - (z^3/2-1)/(42*?(z^2)+z+1)
Three roots: z1 = 1.2599, z2 = -0.62996 + 1.09112*i and z3 = -0.62996 - 1.09112*i for the polynomial z^3/z - 1 = 0.
Sonate K 1376 Franges d'interférence moiré
Around z2 = -0.62996 + 1.09112*i and z3 = -0.62996 - 1.09112*i).
Newton/Julia Fractal (937)
f(z) = z = z - (z^3/2+1)/(42*z^2+z+1)
Sonate K1378
Newton/Julia Fractal (938)
f(z) = z = z - (z^3/2+1)/(42*?(z^2)+z+1)
Three roots: z1 = -1.2599, z2 = 0.62996 + 1.09112*i and z3 = 0.62996 - 1.09112*i for the polynomial z^3/z + 1 = 0.
Sonate K1380
Sonate K1381
At around z2 = 0.62996 + 1.09112*i .