Newton/Julia Fractal (1677)
By Dr. M.Becker
f(z) = z - (1+z^2+z^4+z^6/20)/(2.475/37*z^5+7*z^2+1)+(-.26942824+6.30800331E-3)
Sonate K3023
Newton/Julia Fractal (1678)
f(z) = z - (1+z^2+z^4+z^6/20)/(2.475/37*z^5+7*z^2+1)+(-.27942824+6.30800331E-3)
Newton/Julia Fractal (1679)
f(z) = z^2+z*SQR(z)+(-0.157571966+2.7918228E-2*i)
Sonate K3026
Sonate K3027
Newton/Julia Fractal (1680)
f(z) = z^2+z*SQR(z)+ (-.159274923+4.56837331E-2*i)
Sonate K3029
Sonate K3030
Newton/Julia Fractal (1681)
f(z) = z^2+z*SQR(z)+ (-.158574923+4.56837331E-2*i)
Sonate K3032
Newton/Julia Fractal (1682)
f(z) = z^2+z*SQR(z)+ (-.162274923+4.56837331E-2*i)
Sonate K3034
Newton/Julia Fractal (1683)
f(z) = z^2+(0.0001+0.1*i)/z
Newton/Julia Fractal (1684)
f(z) = z^2+(0.0001+0.4*i)/z
Newton/Julia Fractal (1685)
f(z) = z^2+(0.007-0.23*i)/z
Newton/Julia Fractal (1686)
f(z) = z^2+(0.0001+0.05*i)/z+(0.0001+0.05*i)
Sonate K3039
Newton/Julia Fractal (1687)
f(z) = z^2+(0.0001+0.05*i)/z+(0.0001-0.05*i)
Newton/Julia Fractal (1688)
f(z) = z^2+(0.007-0.137*i)/z
Sonate K3042
Newton/Julia Fractal (1689)
f(z) = (z^2+0.001/z)/(0.95-0.31225*i)
f(z)=(z3+c)/(dz) with c=0.001 and d=0.95-0.31225i, shown on [-1.5;1.5]×[-1.5;1.5].
d is a complex number with absolute value approx. 1. It makes the triangle knots on the last picture turn a bit. So their three branches cannot meet each other straightly, but run into spirals.