Quantcast
Channel: blog化学
Viewing all articles
Browse latest Browse all 2255

Newton/Julia Fractals (1714)~(1720)

$
0
0
Newton/Julia Fractal (1714)

Infinite Douady's Lapin?
f(z) = (z^5-(0.05+0.0702*i)*z+0.09)/z^3
イメージ 1



Newton/Julia Fractal (1715)

Again Becker's Dragon
f(z) = (z^3+(0.51+0.78*i)*z)/(z+1)+0.005
イメージ 2
Dr. Michael's function f(z) = (z^3+(0.5+0.78*i)*z/(z+1)

Newton/Julia Fractal (1716)

 Becker's Tag Crest
f(z) = z^4/(0.5*z^12+z^8+0.6223*z^4+0.0001)
イメージ 3



Newton/Julia Fractal (1717)


f(z) = z^4/(0.14*z^12+z^8+0.635*z^4+0.0001)
イメージ 4



Newton/Julia Fractal (1718)


f(z) = z^4/(0.274*z^12+0.5*z^8+0.635*z^4+0.0001)
イメージ 5



Newton/Julia Fractal (1719)


f(z) = (z^5-z)/(0.778*z^2+1)
イメージ 6



Sonate K3078
イメージ 8



Sonate K3079
イメージ 7



Newton/Julia Fractal (1720)


f(z) = (z^3+z)/((-0.1+i)*z^2+1)+0.01
イメージ 9


Sonate K3081
イメージ 10


Sonate K3082
イメージ 11


Dr.Michael Becker

 f(z) =( z^3-z)/(d*z^2+1) mit d=-0.003+0.995i, dargestellt auf [-7;7]x[-7;7].

Here the absolute value of d is smaller than 1, so that Infinity is in the Fatou set. Near 0 there are again to petals. Near Infinity the function behaves as z->-iz, so that the number of spirals, which run direction Infinity is exactly four. Probably the four turning points of the spirals form a repelling cycle of period 4.
イメージ 12


Sonate K3083

f(z) = (z^3+z)/((-0.3+0.995*i)*z^2+1)+0.01

イメージ 13



Newton/Julia Fractal (1721)

Michael Becker Function
f(z) = (z^3+z)/((-0.003+0.995*i)*z^2+1)
イメージ 14


Viewing all articles
Browse latest Browse all 2255

Trending Articles