Newton/Julia Fractal (1789)
f(z) = z^14-(-1.14054+4.6574477E-2)*z
Newton/Julia Fractal (1790)
f(z) = z^14-(-1.09854+9.6574477E-2)*z
Newton/Julia Fractal (1791)
f(z) = z^14- (-1.074002+6.27914899E-2)*z
Newton/Julia Fractal (1792)
f(z) = z^14-(-6.96019E-2+1.020774*i)*z
Newton/Julia Fractal (1793)
f(z) = z^2*SQR(1-z^2)+(-1.056816-4.334561E-3*i)
Sonate K3181
Sonate K3182
Newton/Julia Fractal (1794)
f(z) = z^2*SQR(1-z^2)+c
Landing Point at (-1.0568163173697-4.33456176698954E-1*i) of Mandelbrot map.
Newton/Julia Fractal (1795)
f(z) = z^2*SQR(1-z^2)+(-1.056936-4.334561E-3*i)
Sonate K3184
Newton/Julia Fractal (1796)
f(z) = z^2*SQR(1-z^2)+(-1.057056-4.334561E-3*i)
Newton/Julia Fractal (1797)
f(z) = z^2*SQR(1-z^2)+(-1.057156-4.334561E-3*i)
Newton/Julia Fractal (1798)
f(z) = z*(1+(1/2)*z-(1/8)*z^2)- (-7.19423E-2+1.0000E-7*i)
Newton/Julia Fractal (1799)
f(z) = z*(1+(1/2)*(1-z)-(1/8)*(1-z)^2)-0.253733
Sonate K3189
Newton/Julia Fractal (1800)
f(z) = z*(1+(1/2)*(1-z)-(1/8)*(1-z)^2)-0.453733
Sonate K3191