Newton/Julia Fractal (1878)
f(z) = SINH(z^2+z*SQR(z))+(-.08617625-.69549570*i)/3
Mandel Map at c = -0.08517625 - 0.6954957*i
Newton/Julia Fractal (1879)
f(z) = SINH(z^2+z*SQR(z))+(-7.04366410E-2-0.7542363*i)/3
Sonate K3296
Sonate K3297
Sonate K3298
Mandel Map at c = -7.04366410E-2-0.7542363*i
Newton/Julia Fractal (1880)
f(z) = SINH(z^2+z*SQR(z))+(-7.75366410E-2-0.7542363*i)/3
Sonate K3300
Newton/Julia Fractal (1881)
f(z) = SINH(z^2+z*SQR(z))+(-8.4522779E-2-0.7639659*i)/3
Mandel plot f(z) = SINH(z^2+z*SQR(z))+(-8.4522779E-2-0.7639659*i)/3 at c = -8.4522779E-2 - 0.7639659*i
Newton/Julia Fractal (1882)
f(z) = SINH(z^2+z*SQR(z))+(1.0221982+.85688285*i)/2
Newton/Julia Fractal (1883)
f(z) = SINH(z^2+z*SQR(z))+(.507554339823-.12602303470*i)/5
Mandel Map of f (z) = SINH(z^2+z*SQR(z))+c/5 at around c = 0.51755433982-0.126023034703*i
Newton/Julia Fractal (1884)
f(z) = z^7+0.8*z^3+(-.4774030+1.78733927E-3*i)/z
Newton/Julia Fractal (1885)
f(z) = z^7+0.8*z^3+.02874030/z
Newton/Julia Fractal (1886)
f(z) = z^7+0.8*z^3+0.17/z
Newton/Julia Fractal (1887)
f(z) = z^7+0.8*z^3-0.17/z
Newton/Julia Fractal (1888)
f(z) = z^7+0.8*z^3+0.07/z
Newton/Julia Fractal (1889)
f(z) = z^7+0.8*z^3-0.27/z
f(z) = z^7+0.8*z^3-0.46577/z
Newton/Julia Fractal (1890)
f(z) = z^7+0.8*z^3+0.46577/z
Newton/Julia Fractal (1891)
f(z) = z^7+0.8*z^3+0.2787/z
Newton/Julia Fractal (1892)
f(z) = z^7+0.8*z^3+0.23187/z
Newton/Julia Fractal (1893)
f(z) = z^7+0.8*z^3+0.25187/z
Newton/Julia Fractal (1894)
f(z) = z^7+0.8*z^3+0.0130987/z
Newton/Julia Fractal (1896)
f(z) = z^7+0.8*z^3+0.0030987/z
Newton/Julia Fractal (1897)
f(z) = z^7+0.8*z^3-0.49987/z